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This paper investigates a new approach to target density functions for active sensor imaging. The data obtained from a 
phased array radar system is processed by the newly developed technique. In order to reconstruct the target density 
function, the ambiguity function -that is widely used as a radar performance tool- is employed. Theoretical background of 
the system model is examined and simulation results are achieved. 
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1. Introduction  
 

Radars are devices that interpret the relation between 

sent and backscattered signals and receive various 

information about the target. The distribution of the 

target’s reflectivity function on spatial plane is able to 

provide the target’s radar image [1,2,14]. The range 

resolution of target area is related to bandwidth, while the 

cross range resolution varies with the aperture size of 

radar. However, using large apertures in order to obtain 

high cross range resolutions is difficult to construct and 

also expensive. In 1950’s a revolutionary invention called 

synthetic aperture radar was made by Wiley [11,12]. This 

invention provided new possibilities to coherently process 

the signals obtained from multiple radar elements from 

diverse angles related to target, or implement various 

geometrical approaches.  

In this paper, system models that fit in with this 

approach are investigated and a new method is developed. 

 

 

2. Classical approaches 
 

In this paper, two previous studies on target density 

functions are presented. 

 

SAR – ISAR Imaging 

 

SAR (Synthetic Aperture Radar) – ISAR (Inverse 

Synthetic Aperture Radar) systems are powerful signal 

processing techniques with a wide range of applications 

that adapted various forms of problems. The basic goal of 

SAR-ISAR systems is to achieve a two dimensional planar 

image of the observed target. Synthetic aperture methods 

are used in order to obtain raw signals in SAR-ISAR 

systems. 

The densities of scattering centers can be shown on a 

two-dimensional planar image by applying Fourier based 

operations to the signals obtained under finite bandwidth 

and diverse aspect [1,4,9,11,14,15]. 

In this method, the basic steps of the ISAR approach 

that processes a three dimensional target’s two 

dimensional image can be considered as: 
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This equation assumes the condition that 

2Rp(t)/c≤T≤TPRI+2Rp(t)≤tf0. The term ρ(x,y) is the density 

function of the target being imaged, TPRI is pulse repetition 

interval, Rp(t) is range, f0 is carrier frequency and the c is 

the speed of propagation, (i.e., light speed ). Range can be 

expressed as a function of time. 
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In this expression α is azimuth, θ(t) is the rotation 

angle as a function of time. After these operations, by 

taking inverse Fourier transform of s(t), the ρ(x,y) target 

density functions can be reconstructed as [4]. 
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Fowle – Naparst Approach 

 

The Fowle-Naparst’s work is one the first ideas that 

put target density function forward [7]. In accordance with 

this work, the density of the space which includes target is 
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reconstructed via the ambiguity function. The expression 

of the ambiguity function is given as; 
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In this function, x and y are the range and velocity of 

the target respectively. This approach was first introduced 

by Fowle [6] and then improved by Naparst [7] by 

employing the ambiguity function. In this work, an 

improved target density function D(x,y) employing the 

ambiguity function which includes the variables velocity 

and range was developed.  

The relation between the signal reflected from the 

target e(t) and the signal sent s(t) is expressed as 
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The target density function D(x,y) that contains by the 

backscattered signal can be reconstructed by the following 

complex operations in vector space including the 

ambiguity function given above. 
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In this expression sm is the propagated signal and en is 

the backscattered signal (echoed). The ambiguity function 

used has the following form. 
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Fig. 1 represents an approximation of a Dirac 

function’s target density function, for x=0 y=1, that is 

reconstructed by ambiguity function based Fowle-Naparst 

approach [7]. 

 

 
  

Fig. 1. D(x,y) approximation for x=1, y=0. 

 

Imaging by range-angle target density function 

 

In this paper, a new target density function that has 

different properties from the   target density functions 

discussed above is presented. G(R,β) formed new target 

density function contains the variables R as range and 

β=cos(θ) as function of scanning angle. The newly defined 

target density function G(R,β) represents the ratio of the 

amplitudes of the signal sent towards the point (R,β) to the 

backscattered signal. 

The new approach introduced in this paper is imaging 

with phased array radar system. In this case our imaging 

scenario’s schematic representation becomes: 

 

 

 

 

 

 

 

Fig.  2. Imaging with linear phased array radar. 

 

 

As can be seen, this approach only takes the upper 

half plane of the coordinate system into account [3]. In this 

condition, the propagated pulse signal p(t) is: 
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PRF term in this equation is the pulse repetition 

frequency. If this signal is modulated with sc(t) carrier 

signal which is expressed as: 
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the modulated output signal becomes: 
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Echo from the point represented by G(R,β) density 

function is: 
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In this case, if the backscattered signal is the echo of 

the point scatterer located at R1, the signal that contains 

the image function can be showed as; 

θ 

(R,β=cosθ) 

 

x =xi Phased array radar 

 

R 
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The term s(x,t) is the output of the radar system which 

consists of phased array elements. For the solution to the 

algorithm, the next steps can be evaluated. 
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If the last equation that expresses the radar output is 

demodulated by sd(t); 
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Last equation can be considered again as G(k,β),  for 

the k and β variables; 
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The important matter in here is to extract the target 

density function G(R,β). Therefore equation (20) can be 

considered as; 
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To obtain the target density function from equation 

(21), the ambiguity function discussed in previous chapters 

(equation (5)) is employed. By considering the signals 

sm(t) and sn(t), we can make use of the correlation function 

– power spectral density relation. 

The correlation between sm(t) and sn(t) signals can be 

expressed as:  
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and in the symmetrical form; 
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The power spectral density corresponding to the target 

is correlation function’s Fourier transform, then the next 

steps can be formed: 

 

 

   

   

 ω 

 ω  

 ω  

(ω)  

        

       

j

x

j

j

S R e d

u t dt e d

u t e d dt







 

   

   






 


 

 


 



 

 



 

 

     (24) 

 

for  ;
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Equation (21) that contains the G(R,β) target density 

function is compared with the equation (27); 
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Therefore the target density function can be expressed 

as: 
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As a result, target density function is obtained by 

analyzing the relationship between ambiguity function and 

Correlation (Power Spectral Density) approaches. 

 

 

3. Simulation  
 

The simulated target is a fighter aircraft, digitally 

constructed by 120 point scatterers. The dataset of the 

simulated signal represents a complex matrix of the signal 

received by each unit of phased array system. And each 

received data has 64 samples [15]. 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Positions of the scatterer centers. 

 

 

 
 

Fig. 4. Backscattered E-field from scattering centers. 

 

 

 
Fig. 5. Schematic representation of imaging process. 

 

 

 

The radar operates at 8 GHz frequency with 525 MHz 

bandwidth. The total aspect angle diversity is 13.5°.  

In Fig. 5, schematic presentation of the process is 

given. 

During the ambiguity function process, only the right 

half plane of the ambiguity function is taken due to the 

symmetrical property of the ambiguity function. 

Distribution and intensity of the side lobes around the 

peak points in the reconstructed image are directly related 

with signal choice [5,13]. 

In the imaging process of the ambiguity function, we 

expect a sharp peak to be on the scatterer point. However, 

this is impossible due to the natural imperfections of 

theoretical and computational processes such as finite 

bandwidth and noise [16]. 
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4. Result 
 

Fig. 6 shows the result image of reconstruction of the 

target density function by ambiguity function. In Fig. 7, 

ISAR image of the target is also given for comparison. 

 

 

 
 

Fig. 6. Image of target density function reconstructed 

 by ambiguity function. 

 

 

 
 

Fig. 7. Conventional ISAR image. 

 

 

Alterations caused by the side lobes can be seen 

clearly in Fig. 8 and Fig. 9. 

 

 
 

Fig. 8. Normalized scatterer points intensity of target density 

function that reconstructed by ambiguity function. 

 
 

Fig. 9. ISAR image. 

 

This technique certainly supports fundamental signal 

processing methods such as denoising, interpolation etc. 

Improvements on the reference signal enables us to get a 

finer result [13,16]. 
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